5=(x^2)/20+1.5

Simple and best practice solution for 5=(x^2)/20+1.5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5=(x^2)/20+1.5 equation:



5=(x^2)/20+1.5
We move all terms to the left:
5-((x^2)/20+1.5)=0
We get rid of parentheses
-x^2/20-1.5+5=0
We multiply all the terms by the denominator
-x^2-(1.5)*20+5*20=0
We add all the numbers together, and all the variables
-1x^2+70=0
a = -1; b = 0; c = +70;
Δ = b2-4ac
Δ = 02-4·(-1)·70
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*-1}=\frac{0-2\sqrt{70}}{-2} =-\frac{2\sqrt{70}}{-2} =-\frac{\sqrt{70}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*-1}=\frac{0+2\sqrt{70}}{-2} =\frac{2\sqrt{70}}{-2} =\frac{\sqrt{70}}{-1} $

See similar equations:

| 365/7=x | | 5=1.5+x*(x/10)-5*(x/10)^2 | | 4+r/3=-2 | | 5=1.5+x*x/10-5*x/10^2 | | 5=1.5+x*x/10-5*(x/10)^2 | | .4n+1=1.6 | | x*(x/10)=0 | | 22.54-x=0.06 | | 5x-1+4x=-8+9x+7 | | 5/p=-32 | | 3(2p+7)=14+5p | | -5(v+1)=-29+v | | x*(x/10)=5 | | Y=-2x+220 | | 14(5x+3)=-19(x-4) | | 100/x=0.37 | | 8(15x+6)=-19(x-4) | | x+(-5.004)=2.826 | | 6x=27-3/2x | | 3.4+4.7n=0.58 | | 20(-12x+25)=6(x-5) | | 11b+b^2=42 | | 20(14x+19)=-5(x-4) | | 3x+12=(2+-3)+4 | | 17(3x-14)=35(x+2) | | 7s+4(3-2)=18 | | 100÷d=20 | | 14(13x-6)=36(x+2) | | -0.4n+1=1.6 | | -2+7x=5(25x+10)-x | | 4÷x-2=2 | | 8+14x=3(13x+21)+x |

Equations solver categories